Briefing Paper of the City Streetscene Manager

1. Purpose of the Paper and Summary

1.1. The purpose of this briefing note is to assist members of the Commission to consider traffic congestion in the city, establish the causes, consider any measures that may mitigate it and formulate an action plan to reduce it.

1.2. Nationally traffic congestion has been identified as a major drain on the economy and a contributory factor in increased air pollution and resultant damage to health.

1.3. According to the annual Tom Tom traffic congestion index published earlier this year congestion in the UK’s biggest cities is 14% worse than five years ago, whilst compared against the rest of Europe, average congestion was down over the same period. Hull has been identified within this study as being the sixth most congested city in the UK. Congestion has a potentially negative effect on new and existing business and investment in the city.

1.4. Increasing levels of traffic congestion are not only frustrating for motorists and in particular commuters, but also frustrate the operation of local bus services, making it difficult for buses to operate to published timetables.

1.5. It is recognised in the Tom Tom report that should even a small percentage of motorists (5%) choose a more sustainable form of transport then there would be a significant reduction in congestion levels.

1.6. There are a number of ‘soft’ and ‘hard’ measures that can assist in reducing traffic congestion but by far the one that is likely to produce the best results is the adoption of alternative modes of travel, particularly by commuters. Travel planning has had limited success to date, however the promotion of, and introduction of a staff travel plan by the City Council would give the authority the opportunity to lead the way for major employers in the city.
2. **Background**

2.1. There are a number of issues that have contributed to more congested roads: growth in vehicle numbers influenced by higher levels of employment and physical constraints on the highway network.

2.2. Traffic congestion has been recognised as a major issue for residents in the city in recent years as identified in the National Highways and Transport Public Satisfaction Survey in which 56% of residents who responded to the survey expressed dissatisfaction.

Growth in the number of vehicles on the road

2.3. Recent information from the Department for Transport (DfT), a statistical release published on 8 September 2016, has identified that the number of newly registered vehicles in the UK in the second quarter of the year (April to June 2016) has exceeded 800,000 for the first time since 2003. This represents an increase of 2% on the same period in 2015. At the end of June 2016 there were 37.1 million vehicles licenced for use on roads in the country, of which 30.7 million were cars. In the year to June 2016 the stock of vehicles increased by 2.4%.

2.4. The largest percentage increase in the year to June 2016 was for vans at 4.6% followed by Heavy Goods Vehicles (HGVs) at 2.3%. Motorcycles increased over the same period while buses and coaches fell by 0.5%.

2.5. Over the last twenty years the vehicle stock has increased by 42%. The largest increase was for vans at 72%, followed by motorcycles at 67%. Growth in HGVs was 13% and buses and coaches only 3%.

2.6. Access to a motor vehicle in Hull is low compared to other areas of the country. The 2011 census identified households without a car or van as 40.6%. The following table identifies the number of cars and vans in the city in 2001 and 2011 and using information from the 2001 and 2011 census, compares Hull with the region and nationally for the number of cars or vans available in the household.

<table>
<thead>
<tr>
<th></th>
<th>2001</th>
<th>2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>All cars and vans in Hull</td>
<td>74,994</td>
<td>90,240</td>
</tr>
<tr>
<td>Households without cars or vans (%)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hull</td>
<td>43.8%</td>
<td>40.6%</td>
</tr>
<tr>
<td>Yorkshire and the Humber</td>
<td>30.3%</td>
<td>27.6%</td>
</tr>
<tr>
<td>Humber</td>
<td>29.9%</td>
<td>27%</td>
</tr>
<tr>
<td>England</td>
<td>26.8%</td>
<td>25.8%</td>
</tr>
</tbody>
</table>

2.7. While it can be noted that the number of households in the city with no access to a car or van has only decreased by 3.2%, there has been a significant increase of 20% (15,246) in the number of cars and vans in the city as multiple...
car ownership has increased, along with the growth of internet shopping and consequential van deliveries.

2.8. According to the 2011 census driving a car or van to work (29.8%) was the most popular method of travelling to work, although this is below the regional (36.4%) and national figures (34.9%).

2.9. The next most popular method of travel was bus, minibus or coach (7.5%) which is a more popular method of travel to work in Hull than regionally (5.3%) and nationally (4.7%).

2.10. A significantly higher proportion of people in Hull choose to cycle to work (4.7%) compared to 1.6% regionally and 1.9% nationally. This can be attributed to the flat terrain and investment the Council has made in cycling infrastructure.

2.11. On an annual basis the Council undertakes a ‘snap-shot’ cordon survey which counts the number of vehicles that pass under the railway bridges to gain a general impression of traffic volumes and the way they are changing. The sample locations include all of the arterial routes and some other routes. The streets included are listed in the table below. The results of the traffic counts reveal that volumes have maintained similar levels over the last 10 years, with slight fluctuations from year to year. In general, the 12 hour traffic flows have been broadly stable over the last six years and slightly less since 2010 than they were from 2006 to 2009.

<table>
<thead>
<tr>
<th>Roads included in the High Level Railway Cordon traffic count</th>
</tr>
</thead>
<tbody>
<tr>
<td>A63 Clive Sullivan Way</td>
</tr>
<tr>
<td>A1166 Hessle Road</td>
</tr>
<tr>
<td>A1105 Boothferry Road</td>
</tr>
<tr>
<td>B1231 Anlaby Road</td>
</tr>
<tr>
<td>Spring Bank West</td>
</tr>
<tr>
<td>Perth Street West</td>
</tr>
<tr>
<td>Chanterlands Avenue</td>
</tr>
<tr>
<td>Newland Avenue</td>
</tr>
<tr>
<td>A1079 Beverley Road</td>
</tr>
<tr>
<td>Bankside</td>
</tr>
<tr>
<td>A1033 Stoneferry Road</td>
</tr>
<tr>
<td>James Reckitt Avenue</td>
</tr>
<tr>
<td>A165 Holderness Road</td>
</tr>
<tr>
<td>Ellis Street</td>
</tr>
<tr>
<td>Hedon Road</td>
</tr>
<tr>
<td>A1033 Flyover</td>
</tr>
<tr>
<td>Alexandra Dock Link</td>
</tr>
</tbody>
</table>

2.12. In addition, information from the Council’s traffic signals sensors is also useful data to understand changes in traffic patterns. It should be noted that this data represents a snapshot only, and it is not sufficient information on which to base a long term strategy. One-off incidents on the day of the survey could
quite easily skew the data and it should be noted that when the network is at full capacity traffic flows can be slower than the demand due to congestion.

2.13. Based on the snapshot the main observations from this data are that:

1. Beverley Road inbound has a less well defined morning peak flow rate and tends to be busy all day. There is a late evening peak between 18:00 and 19:00. Outbound, there is a more defined afternoon peak flow, and it may be starting sooner in 2016.

2. Holderness Road has a clear inbound morning peak from around 8:00 and the peak flow was higher in 2016 than 2015. The outbound afternoon peak was less well defined. Overall there was less traffic on the day in 2016 than on the day in 2015 and there was a high spike at about 14:30.

3. The shape of the Anlaby Road inbound curve is not as expected and further investigation is required here. The inbound peak is absent and there is an afternoon peak. It is possible that the location chosen is congested at the morning peak, and this would reduce flow rates. This needs to be verified by observation. The outbound comparison shows reduced afternoon peak flows.

4. Spring Bank is an extremely busy route with a distinct inbound morning peak. In the afternoon there is a peak in outbound traffic after 16:00 and on the dates compared there were lower flows overall in 2015.

5. New Cleveland Street and Great Union Street are both interconnecting routes between main inbound and outbound corridors. There are no pronounced morning or evening peaks.

2.14. According to the DfT’s average delay on A Roads 2014, Hull experienced an average delay of 60 to 90 seconds per vehicle mile which it categorises as high levels of delay. DfT statistics also show that between December 2014 and December 2015 the average speed on local roads during the morning peak fell from 16.7mph to 16.1mph. To put this into context, extra journey times would be as follows:

<table>
<thead>
<tr>
<th>Length of journey</th>
<th>1 mile</th>
<th>2 miles</th>
<th>3 miles</th>
<th>5 miles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Journey time at 16.7mph</td>
<td>3 mins 36 secs</td>
<td>7 mins 11 sec</td>
<td>10 mins 47 secs</td>
<td>17 mins 58 secs</td>
</tr>
<tr>
<td>Journey time at 16.1mph</td>
<td>3 mins 44 secs</td>
<td>7 mins 27 secs</td>
<td>11 mins 11 secs</td>
<td>18 mins 38 secs</td>
</tr>
<tr>
<td>Increase in journey time (Dec 14 to Dec 15)</td>
<td>8 secs</td>
<td>16 secs</td>
<td>24 secs</td>
<td>40 secs</td>
</tr>
</tbody>
</table>
2.15. As the lengths of congested road in the city (excluding the A63) are generally short, it can be seen that, whilst regrettable, the real time increase in journey time over this period is quite small.

Increased levels of employment

2.16. An increasing number of people in employment in the city has resulted in more commuting with a large travel to work area generating a net number of 15,375 journeys into the city each day; although it is difficult to identify which mode of travel is used on a regular basis it is likely the majority travel by car or van.

2.17. Hull has experienced its highest ever levels of public and private sector investment, with developments totalling well over £1bn now being delivered in the city.

2.18. The city’s employment rate has increased faster than the national average (the total number of people in employment is 115,200 and 10,300 more people are in work compared to three years ago).

2.19. According to the Financial Times, Hull has the fourth highest jobs growth compared to other UK cities.

2.20. At 4%, Hull’s Job Seeker Allowance (JSA) claimants, are the lowest they have ever been, with 8,240 (54.7%) fewer people claiming JSA than three years ago.

2.21. Total Gross Value Added (GVA) for Hull in 2014 was estimated at £5,038 million; £142 million more than in 2013. With a GVA per head of population of £19,549, this represents an increase of £542 per person.

2.22. According to the 2011 census there were a total of 111,269 residents of Hull aged 16+ and in employment

- The majority 73,454 (66%) worked within the Hull local authority area
- A further 18,534 (16.7%) worked within the East Riding of Yorkshire local authority area
- 704 (0.6%) and 601 (0.5%) worked in the North East Lincolnshire and North Lincolnshire local authority areas respectively
- The remainder worked elsewhere within Yorkshire and other areas of the country.

2.23. There were 124,924 people aged 16+ employed in jobs based in Hull

- The majority 73,454 (58.8%) lived within the Hull local authority area
- 33,138 (26.5%) lived within the East Riding of Yorkshire local authority area
- 685 (0.5%) and 1,391 (1.1%) lived within the North East Lincolnshire and North Lincolnshire local authority areas respectively
- The remainder lived elsewhere within Yorkshire and other areas of the country.
Issues on the highway network that contribute to traffic congestion

2.24. In addition to the increase of motor vehicles used for commuting, leisure and business there are a number of issues that contribute locally to traffic congestion. There are five major arterial roads, excluding the A63, leading to the city centre. Earlier in this paper the traffic characteristics of these roads are identified. Further examples are given later on individual problems on a number of the arterial roads.

2.25. Whereas the arterial roads into and out of the city centre are wide enough for two lanes in both directions for approximately one mile they reduce in width prior to the introduction of dual carriageway towards the city boundary. These lengths of carriageway don’t permit dual carriageway and with the majority of the length being through local retail areas there is a requirement to permit roadside parking for deliveries and shoppers. The opportunity to introduce additional bus lanes for travel in both directions is also limited.

2.26. By far the busiest road in the city is the A63 which provides the main trunk road access into the city from the national motorway network and as such has a large vehicle flow (54,000 average daily movements). As part of the national trunk road network the A63 is managed by Highways England from their Incident Centre at Wakefield.

2.27. Serving the port it carries a significant number of heavy goods vehicles (approximately 15%). Apart from a small number of lay bys there are no hard shoulders for its entire length in the city and there are no variable message signs. Currently motorists have to rely on information broadcast by local radio stations resulting in a limited opportunity to advise of potential alternative routes if there is a particular incident on the network.

2.28. At the junction of the A63 and A1079 at Mytongate traffic is controlled by traffic signals. At peak times traffic queues back to the previous junction at Daltry Street flyover in the west and Garrison roundabout in the east and often beyond these points. Any incident or breakdown on the section of this route has the potential to put a strain on the City’s highway network if traffic is unable to access or egress from the trunk road at Mytongate, Garrison roundabout, or Daltry Street. Once traffic is unable to join the A63 at Mytongate from the A1079, traffic queues back into Ferensway. This has a far reaching effect on the City’s highway network leading to junction blocking on Ferensway restricting entrance into the Paragon Interchange and junction blocking further north at the junction with Spring Bank and Freetown Way.

2.29. For a number of years there have been calls for a recovery service to be provided on this section of the route, particularly at peak times. The arrangement for any vehicle breakdown is that it is the responsibility of the driver to organise repair or recovery or, in the event of a collision the police may assist, but as their resources have diminished assistance is limited. Cars and light vans can be often pushed onto the verge in the event of breakdown thus enabling traffic to flow again but this cannot be done with larger, heavier vehicles which will obstruct the carriageway until a repair or recovery can be undertaken.
2.30. Most haulage companies and car drivers have breakdown and recovery arrangements in place, often with organisations away from the city. There is also a lack of heavy vehicle recovery vehicles in the city and its immediate area. Inevitably whenever there is a broken down vehicle on the A63 the recovery vehicle has difficulty in accessing the site of the breakdown as it is held up in the same traffic queue.

2.31. One of the major radial routes managed by the City Council that has a congestion problem is Spring Bank West. It carries traffic to/from the north west of the city and East Riding villages. The road is dissected by the Hull to Scarborough railway line with a level crossing across the dual carriageway close to its junction with Chanterlands Avenue. Passenger train services operate on a thirty minute headway throughout the day but across both the morning and evening peaks the service provision increases to every fifteen minutes. As safe distances have to be kept for rolling stock and the close proximity between the level crossing and Paragon Station, road traffic is often kept waiting, leading to long traffic queues and junction blocking not only on the two approaches but also on nearby Chanterlands Avenue.

2.32. Over the last fifteen years the Council has worked with local communities to reduce the number of rat runs and implement residential zones in a bid to reduce injury, accidents and create more attractive neighbourhoods. This policy proved to be immensely successful in reducing annual fatal and injury accidents in the city from 126 in 2000 to 105 in 2015. Invariably with fewer rat runs available to motorists more traffic may have migrated to the arterial roads.

2.33. Lower fuel prices over the last twelve months have led to a feel good factor amongst motorists who often, when comparing travel costs, only consider the price of fuel rather than the full cost of motoring, resulting in less thought being given to considering other forms of travel particularly at off peak times.

2.34. Unlike the majority of major cities within the UK, Hull is split by a working tidal river; when at high tide there are vessel movements there is a requirement to lift road bridges, two of which carry A class roads, Myton Bridge (A63) and North Bridge (A165). Whilst the number of bridge lifts has decreased in recent years, river traffic has precedent over road traffic. For most bridge lifts or swings the time when the road is closed is minimal, up to four minutes but it is sufficient to lead to a tail back of traffic which takes longer than the time the road is closed to clear. At peak times this can lead to blocking back of other road junctions. The change of precedence of water over road can only be changed through an Act of Parliament.

Public transport as a means of mitigating the effect of traffic congestion

2.35. The Council has a statutory responsibility to support bus companies through management of the highway network and in doing so has introduced a raft of measures that enable more efficient bus travel.
2.36. The 2011 census identified that residents of the city make more use of public transport than both regionally and nationally. Over the last five years passenger numbers have remained relatively stable but these number have begun to decrease.

<table>
<thead>
<tr>
<th>Year</th>
<th>Total passengers</th>
</tr>
</thead>
<tbody>
<tr>
<td>2011/2012</td>
<td>24,732,970</td>
</tr>
<tr>
<td>2012/2013</td>
<td>24,345,347</td>
</tr>
<tr>
<td>2013/2014</td>
<td>24,280,366</td>
</tr>
<tr>
<td>2014/2015</td>
<td>23,612,644</td>
</tr>
<tr>
<td>2015/2016</td>
<td>22,598,481</td>
</tr>
</tbody>
</table>

2.37. It is unclear as to why passenger numbers have decreased other than the improvement in the economy has encouraged greater car ownership and usage. This would however suggest there would be more vehicle traffic on the highway network but other data does not support this. What it does suggest is that more needs to be done to halt the decline by making bus services more attractive to car users though improved journey times and passenger comfort and facilities.

2.38. The first bus lane was introduced on Beverley Road in 1984 and by 2013 the Council had introduced bus lanes on:

- Anlaby Road inbound between Meadowbank Road and Ferensway, and outbound between Ferensway and Walton Street;
- Beverley Road inbound between Sutton Road and Ferensway and outbound between Ferensway and south of Inglemire Lane;
- Spring Bank West (inbound) between the railway bridge and Hymers Avenue;
- Witham and Holderness Road outbound between Great Union Street and Ings Road and inbound on Holderness Road and Clarence Street between west of Marfleet Lane; and Great Union Street.

2.39. Carriageway width constraints however mean that these bus lanes are not continuous between their start and end points.

2.40. Other measures that have been introduced include short lengths of bus lanes on the approach to traffic signals and permitting buses to travel ahead from left turn lanes.

2.41. Bus lanes cannot operate correctly and give the required priority to buses when other drivers ignore the regulations and drive in them. Furthermore, it can lead to frustration if some drivers observe the bus lane whilst others take advantage by ignoring them. This, in turn, can lead to greater numbers of
contraventions if drivers recognise that there is no penalty for ignoring the bus lane and this can compound the situation. For these reasons, the enforcement of bus lanes is an operational necessity to ensure they are effective.

2.42. Prior to the Council taking on bus lane enforcement this was performed periodically by the Police. Bus lane enforcement is a function that is a shared responsibility with the Police who have been kept up to date with the camera locations that we have deployed and will only enforce areas that the Council are not active in.

2.43. The Council began bus lane enforcement using ANPR cameras in July and August 2015. Prior to this the Council engaged in a comprehensive publicity campaign which included:

- Use of Variable Message Signs;
- Posters in roadside poster displays throughout the city, on the backs of buses and in Council car parks;
- Use of the Council’s web site and social media.

A separate report on this agenda considers bus lanes in more details.

3. Issues for Consideration

3.1. Motor vehicles using a road network in the city that has not increased in capacity substantially in recent years, apart from the introduction of estate roads, are having an effect on traffic movements especially at peak times. Greater vehicle ownership and the increase in use of cars for the “school run” is having a noticeable effect on the length of the peak particularly in the afternoon.

3.2. The effect of traffic congestion on the city’s bus network has had an adverse impact on services. Additional buses have had to be added to the bus network simply to increase bus running times to reflect lower traffic speeds and the effect of traffic congestion. Based on information analysed prior to the introduction of bus lane enforcement, bus speeds have slowed over the last thirteen years from 10.8mph to 9.1mph.

3.3. A number of ‘pinch points’ have been identified locally, other than where road width is narrowed on the main arterial routes, where action is currently being taken or studies are being undertaken to identify solutions and provide sufficient information for funding bids for local improvements.

 a. A1105 Anlaby Road Widening

The westbound carriageway on Anlaby Road, outside of the Hull Royal Infirmary has only one lane in order to permit a central refuge for a signalised pedestrian crossing. This facility also provides the road space for a right turn lane into the Infirmary site for emergency ambulances. The eastbound lane however has two lanes. On the approach to this constraint on the westbound carriageway there is an afternoon peak time bus lane. Due to the carriageway constraint at this
point and a bus stop on the approach there is only a short distance for two lanes of vehicles to merge into one leading to a pinch point for traffic particularly at peak times.

This has been recognised as an issue for some time but until recently without the ability to acquire land to widen the road and funding to construct an additional carriageway lane. Following a successful bid to the Local Growth Fund the Council has been able to purchase land in the front of the Hull Royal Infirmary site and begin to widen the carriageway. This scheme is scheduled for completion before the end of the year and should result in a significant improvement for westbound traffic.

b. Park Street Bridge Strengthening

Park Street is an important link between Anlaby Road and Spring Bank providing the main access to the St Stephens Shopping Centre and the rear of the Paragon Interchange. It is also the nearest ‘relief’ road for Ferensway. Park Street however passes over the Hull to Selby railway line on a road bridge which has a low weight limit of 7.5T. This in effect prevents it acting fully as a relief road for Ferensway, other than for cars and light vans, should an incident occur on Ferensway. Following a successful bid to the Local Growth Fund the Council is working with Network Rail to strengthen the bridge which will enable it to have a carrying capacity of 40T allowing all classes of vehicle to pass over it. The scheme to undertake this will be undertaken early 2017 but will require a full road closure for nine weeks in order for it to be undertaken, which may result in some short term increase in traffic delays.

c. Stoneferry Road Corridor

Stoneferry Road forms part of the A1033 from the Mount Pleasant roundabout to the ‘Bandstand’ roundabout where the A1033 continues as Holwell Road serving the Sutton Fields Industrial Estate. Leads Road (B1237) also interchanges at the ‘Bandstand’ roundabout. These roads and other links onto Stoneferry Road are subject to severe traffic congestion at peak times which at times blocks a number of minor roads in the area. In an attempt to identify potential solutions the Council engaged specialist transport consultants to investigate traffic flows and movements and develop and design a solution that will reduce traffic congestion and improve safety for vulnerable road users along the Stoneferry Corridor.

The initial report has been produced making a number of recommendations that will change the layout of the major junctions along the corridor. Further work is currently being undertaken including identification of utility company infrastructure which may require moving or protecting, and road safety audits of the initial junction designs. It is
likely that the project, subject to funding, will take two years to complete.

3.4. There have been noticeable changes to peak travel times. Whilst by and large morning peak times have remained constant afternoon times have become elongated. This can be attributed to how work patterns have changed in recent years, changes to school session times, and the increased number of parents collecting their children from school by car.

3.5. As more traffic is using the highway network it is essential that signalised road junctions at peak times operate at full capacity to ensure that there is maximum throughput. For this reason bus lanes are curtailed in advance of most junctions to allow maximum discharge from both lanes such that, contrary to some opinions, bus lanes do not significantly reduce overall capacity of the network. Casual observation has identified poor lane discipline and not full use being made of available marked lanes particularly outside the hours of operation of the bus lanes.

4. Next steps

4.1. There are a number of measures that can be taken either hard or soft to encourage motorists to consider alternative more sustainable travel options or improve traffic flow. In a city with tight boundaries one option that is not available is creating more road space. Neither would it be environmentally desirable or affordable to undertake large scale widening by removal of grass verges or demolition of properties at pinch points on the network.

4.2. Nationally, studies have shown that building new ring roads does not eliminate traffic congestion, more has to be done to manage existing road space and to spread demand and to encourage modal shift.

4.3. The planned improvements to the A63 should bring about a significant reduction in traffic congestion, not only on the A63 but also on roads feeding onto it, as well as other routes currently used by traffic avoiding the A63.

4.4. It should also be noted that Highways England are currently further developing their route strategy which will entail the A63/A1033 which will hopefully include measures such as VMS and CCTV to help manage traffic flow.

4.5. Contained within the highway network we have 185 traffic signal controlled sites. These sites control either pedestrian crossing movements or a combination of pedestrian / vehicle crossing movement, generally at busy junctions. The traffic signals are programmed to maximise the vehicle / traffic flows throughout the junctions, however due to the variation of traffic flows at various times during the day the standard timings may not be the most efficient. To combat this issue, 96 of the key signalised sites are managed through a Split Cycle Offset Optimisation Technique (SCOOT). The SCOOT system consists of additional traffic sensor loops in the carriageway at the entrance and exits of junctions. These loops feed information to the signal controllers that allow real time amendments to the programmed signal timings maximising traffic flow in conjunction with the varying demand throughout the
day. In addition this data is also fed back to the central data base which in turn can look at signals further along the network and amend the timings along a route based on the information being gathered on street.

4.6. The central control of all traffic signalised sites and variable message signs is managed via a Siemens Intelligent Transport System (ITS). This system is located in Festival House and also takes advantage of the Civic CCTV coverage. This allows for monitoring of and limited manual control over all 185 signalised sites along with the ability to place messages on the city’s variable message signs. We are currently in the process of updating the Siemens system to a fully digital system which will be more robust with less potential for temporary failure and will allow improved control of traffic signals with remote access and the ability to link to the Council’s web site in order to provide live traffic information.

4.7. Improved traffic information should be introduced through variable message signs on the main arterial roads to warn drivers of delays and identify alternative routes. Representation should also be made to Highways England to introduce variable message signs on the A63.

4.8. Independent studies by Tom Tom and others have shown that if 5% of commuters changed their travel arrangements traffic congestion could be reduced by up to 30%. This can be achieved through the promotion of workplace travel planning and increased promotion of sustainable travel alternatives. All major employers in the city should be encouraged to have a workplace travel plan. The City Council, as a major employer should take the lead on this and develop its own plan to encourage staff and members to use sustainable transport or car share rather than the use of motor vehicles by individuals for commuting and business purposes.

4.9. As outlined earlier in this briefing note the city benefits from an extensive bus network which has seen real growth. A longstanding Quality Bus Partnership between the Council and the two major bus operators in the city has assisted in delivering this growth through the delivery of easy to understand timetables, modern bus fleets, bus stop waiting facilities with real time passenger information and smart ticketing. To retain and attract more passengers it is essential that existing resources are not only maintained but additional facilities should be put in place.

4.10. Available road space on the city’s arterial roads restricts the introduction of longer lengths of bus lane however there are opportunities to introduce short lengths of bus lane in some locations.

4.11. Box junctions have been marked at a number of major junctions to improve traffic flow through the prevention of junction blocking. Unfortunately there is a large number of motorists who do not observe the regulations relating to box junctions. Currently outside of London the enforcement of box junctions can only be undertaken by the police. A change to this to enable local transport authorities to take on this responsibility through civil enforcement with the use of ANPR cameras would help ensure box junctions are kept clear unless a right turn manoeuvre is being made. It may be claimed by some that box
junctions could become a cash cow but hypothecation of the penalty charges collected after operational costs could be used for improvements to the highway network to further reduce congestion.

4.12. The Council should continue to look to improve Park and Ride provision from the north of the City to intercept traffic from the A1079 and A1174 however this is at an early stage of development.

Other possible measures not considered in this report

4.13. Some other cities have introduced Congestion Charging as a means of dissuading motorists from using their cars in congested areas. This measure has not been proposed in this report as it is considered any such measure would have a greater detrimental effect on the local economy - and of the operation of the port – than the current levels of congestion.

4.14. Another measure which might be deemed desirable to dissuade commuter parking in the city centre would be the introduction of increased charges for all day, long stay parking. This is not however possible as the Council cannot impose such minimum charges on car parks operated by the private sector.

Andy Burton -City Streetscene Manager

Contact Officer: Graham Hall Telephone No.: 614874

Officer Interests: None

Background Documents: - Bus Lane Review October 2016 E&I Scrutiny Commission